Creating graphs

Now we will create four functions, each for visualizing a different type of graph and test them with the 'guests_included' column (except with the bar graph for string data):

  1. Bar Graph for string data

    def bar_graph_string(main_dataframe_collumn_name) :
        plt.figure(figsize=(15, 5))
        plt.subplots_adjust(bottom=0.3)
        bar_graph = sns.countplot(x=main_dataframe_collumn_name, data=main_dataframe)
        bar_graph.tick_params(axis='x', rotation=90)
        plt.show()
    
    bar_graph_string('bed_type')
    

    1713011717325

    Now, the graphs below will only work properly for NUMERICAL data, as they utilize limits determined by quartiles. Also, notice how it will be necessary to pass the whole column as a parameter (ex: main_dataframe['guests_included']) instead of only passing the string name of the column as done in the bar graph for strings that recieved just the name string 'bed_type'.

  2. Box plot

   def box_plot(main_dataframe_collumn) :
       plt.figure(figsize=(15,5))
       plt.subplots_adjust(bottom=0.3)
       sns.boxplot(x = main_dataframe_collumn)
       plt.show()


   box_plot(main_dataframe['guests_included'])

1712437504057

  1. Histogram
   def histogram(main_dataframe_collumn) :
       plt.figure(figsize=(15, 5))
       plt.subplots_adjust(bottom=0.3)
       sns.histplot(x = main_dataframe_collumn, kde=True)
       plt.show()

   histogram(main_dataframe['guests_included'])

1712437556071

  1. Bar graph
   def bar_graph(main_dataframe_collumn) :
       plt.figure(figsize=(15, 5))
       plt.subplots_adjust(bottom=0.3)
       ax = sns.barplot(x = main_dataframe_collumn.value_counts().index, y = main_dataframe_collumn.value_counts())
       ax.set_xlim(calculate_limits(main_dataframe_collumn))
       plt.show()

   bar_graph(main_dataframe['guests_included'])

1712437589513